1. Give a systematic name for each of the following compounds, including stereochemistry:

![Chemical structures](image)

2. Which is the most stable from each set of three related structures?

![Chemical structures](image)

3. Draw a meso form and two enantiomers of 3,4-dimethylhexane:
4. Predict the major product(s) of the following reactions (indicate stereochemistry):

(a) \[
\begin{array}{c}
\text{Br}_2, \text{H}_2\text{O}
\end{array}
\]

(b) \[
\begin{array}{c}
\text{HCl}
\end{array}
\]

(c) \[
\begin{array}{c}
(i) \text{O}_3
(ii) (\text{CH}_3)_2\text{S}
\end{array}
\]

(d) \[
\begin{array}{c}
\text{CH}_3-\text{C}≡\text{CH}
(i) \text{NaNH}_2
(ii) \text{CH}_3\text{I}
\end{array}
\]

(e) \[
\begin{array}{c}
\text{Cl}_2
\end{array}
\]

(f) \[
\begin{array}{c}
\text{heat}
\text{KO'Bu}
\end{array}
\]

(g) \[
\begin{array}{c}
\text{NBS}
\end{array}
\]

(h) \[
\begin{array}{c}
(i) \text{H}_2\text{O}, \text{Hg(OAc)}_2
(ii) \text{NaBH}_4
\end{array}
\]
5. What reagent(s) might you use in order to effect the following transformations in a practicable manner? Indicate solvents and/or conditions (e.g. temp.) where appropriate.

(a) \[
\text{Ph} - C \equiv CH \quad \rightarrow \quad \text{Ph} \quad C - C = CH_2
\]

(b) \[
\text{CH}_3 \quad \text{CCl}_2 \quad \text{CH}_3 \quad \rightarrow \quad 2 \quad \text{CH}_3 \cdot \text{C} = \text{O}
\]

(c) \[
\text{OH} \quad \rightarrow \quad \text{OH}
\]

(d) \[
\text{OH} \quad \rightarrow \quad \text{Br}
\]

(e) \[
\text{Br} \quad \rightarrow \quad \text{H}
\]

(f) \[
\text{OH} \quad \rightarrow \quad \text{O} - \text{CH}_3
\]

(g) \[
\text{OH} \quad \rightarrow \quad \text{OH}
\]

(h) \[
\text{Br} \quad \rightarrow \quad \text{CH}_3
\]
6. Show how you might perform either one of the syntheses shown below. You must use the starting material given as your sole source for all carbons in the product (you need not synthesize reagents which are not incorporated, however)

EITHER

(a)

\[
\begin{array}{c}
\text{CH}_3 \\
\text{C}
\end{array}
\]
\[\rightarrow\]

\[
\begin{array}{c}
\text{CH}_3 \\
\text{Cl}
\end{array}
\]

(Racemic, but only the pure cis isomer with no trans)

OR

(b)

\[
\begin{array}{c}
2 \text{Ph} \\
\text{C} \equiv \text{CH}
\end{array}
\]
\[\rightarrow\]

\[
\begin{array}{c}
\text{Ph} \\
\text{CH}_2 \\
\text{CH}_2 - \text{C} \equiv \text{C} - \text{Ph}
\end{array}
\]
7. 1-Chlorohexane reacts with $^\circ$OCH$_3$ ion as shown:

(a) Draw an energy curve for the reaction, and indicate which points on the curve correspond to any intermediates or transition states.

(b) Write a rate equation for the reaction.

(c) Which would you expect to be more reactive as a substrate in this reaction, 1-chlorohexane or 1-bromohexane?

(d) What functional group has been formed in this reaction?
8. Explain why *trans*-1-bromo-4-*tert*-butylcyclohexane fails to react when heated with sodium ethoxide, whereas *cis*-1-bromo-4-*tert*-butylcyclohexane forms mainly alkene I.

![Reaction Scheme](image)

9. In the reaction sequence shown below, indicate whether each structure would be expected to be optically active or not. Also, if the structure is a pure enantiomer, a racemic pair of enantiomers, or a mixture of diastereomers, indicate this. You will have to fill in the final structure (major one only) for yourself!

![Reaction Scheme](image)